翻訳と辞書
Words near each other
・ Miller's House at Red Mills
・ Miller's House at Spring Mill
・ Miller's knot
・ Miller's Landing
・ Miller's law
・ Miller's line
・ Miller's long-tongued bat
・ Miller's mastiff bat
・ Miller's Passage, Newfoundland and Labrador
・ Miller's pier
・ Miller's Point
・ Miller's Point, Western Cape
・ Miller's Retail
・ Miller's Rexall Drugs
・ Miller's rule
Miller's Rule (optics)
・ Miller's saki
・ Miller's snail
・ Miller's Store
・ Miller's striped mouse
・ Miller's Tavern
・ Miller's Tavern, Virginia
・ Miller's Word
・ Miller's, Nevada
・ Miller, California
・ Miller, Canfield, Paddock & Stone
・ Miller, Edmonton
・ Miller, Fulton County, Kentucky
・ Miller, Indiana
・ Miller, Iowa


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Miller's Rule (optics) : ウィキペディア英語版
Miller's Rule (optics)
In optics, Miller's Rule is an empirical rule which gives an estimate of the order of magnitude of the nonlinear coefficient.
More formally, it states that the coefficient of the second order electric susceptibility response (\chi_}) at the three frequencies which \chi_{\text{2}} is dependent upon. The proportionality coefficient is known as Miller's coefficient \delta.
== Definition ==
The first order susceptibility response is given by:
:\chi_ \frac}
where:
* \omega is the frequency of oscillation of the electric field;
* \chi_}:
:D(\omega)=\frac}
:\chi_ \frac
The second order susceptibility response is given by:
:\chi_ \frac
where \zeta_2 is the first anharmonicity coefficient.
It is easy to show that we can thus express \chi_}
:\chi_ \chi_}(\omega)\chi_} and the product of \chi_}:
:D(\omega)=\frac}
:\chi_ \frac
The second order susceptibility response is given by:
:\chi_ \frac
where \zeta_2 is the first anharmonicity coefficient.
It is easy to show that we can thus express \chi_}
:\chi_ \chi_}(\omega)\chi_} and the product of \chi_

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Miller's Rule (optics)」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.